
Compare Cloud NoSql Solution

Ming Lei

lei.m.ming@gmail.com

Many NoSql Solutions out there:

1. Concepts of Distributed Programming
Architecture.

2. Application Programming Model.

3. Detailed Comparison of a few NoSql open-
source projects

Cassandra

Hbase

MongoDB

MemCache

Common Architectures

Highly Coupled (clustered):

refers typically to a cluster of machines that closely
work together, running a shared process in parallel.
The task is subdivided in parts that are made
individually by each one and then put back together to
make the final result.

Space Based (virtual single address space)

refers to an infrastructure that creates the illusion
(virtualization) of one single address-space. Data are
transparently replicated according to application
needs. Decoupling in time, space and reference is
achieved.

Common Architecture (2)

Peer-to-Peer vs. Client-to-Server

No special machine or machines that provide a
service or manage the network resources. Instead
all responsibilities are uniformly divided among all
machines, known as peers.

vs.

Machines are assigned different tasks and
responsibilities in a cluster. They depend on each
other as client to server.

Common Architecture (3)

Inter-process Co-ordination vs. Database Centric

Method of communicating and coordinating work
among concurrent processes on different
machines.

vs.

 Enable distributed computing to be done without any
form of direct inter-process communication, by
utilizing a shared database

Comparison Metrics

 Storage Type

 CAP

 ACID

 Read/Write Performance

 Replication and Sharding

 Indexed Query and Secondary Index

 High Availability, Fault Tolerance, Failover

 Scalability on data and request

Storage Types

 Document: Jackrabbit, MongoDb, ArangoDb,
CouchBase, CouchDb

 Columns: Hbase, Cassandra

 Key-Values: Riak, MemCacheDb

CAP Theorem

 Consistency

 data is the same across replications

 Availability

 ability to access the cluster even if a node in
the cluster goes down

 Partition Tolerance

 cluster continues to function even if there is a
"partition" (communications break) between
nodes

CAP Theorem
 A distributed system can not satisfy all three.

 CA

 data is consistent between all nodes but may
become out of sync if there is partition in
cluster.

 CP

 data is consistent between all nodes, and
maintains partition tolerance by becoming
unavailable when a node goes down.

 AP

 nodes remain online and unsynced during a
partition

CAP and Eventual Consistency
 Eventual Consistency

– Data may be temporarily out of sync on
different nodes and will eventually be brought
to the same version.

– Can be implemented with a background
process that updates out-of-sync nodes.

 A distributed system can be eCAP

– This is how many noSql stores works.

Clustering: Sharding/Replication

 Sharding – distributes a single logical
database system across a cluster of
machines.

 Replication – replicates data among a group of
machines within a cluster to ensure
redundancy, backup, and automatic failover.

 Master-master

 Master-slave

ACID

 Atomic. Everything in a transaction succeeds
or the entire transaction is rolled back.

 Consistent. A transaction cannot leave the
database in an inconsistent state.

 Isolated. Transactions cannot interfere with
each other.

 Durable. Completed transactions persist in the
event of crashes or server failure.

The Scope of ACID

 Traditional SQL: ACID for the whole database
across all tables.

 Cloud based Lightweight SQL: Logically
partition data and support ACID within a logical
partition. E.g.,

– Website hosting service partition data by
different website

 NoSql: partial ACID or ACID at row level, (eg,
HBase)

MemCache

“

Free & open source, high-performance, distributed
memory object caching system, generic in nature,
but intended for use in speeding up dynamic web
applications by alleviating database load.

Memcached is an in-memory key-value store for
small chunks of arbitrary data (strings, objects)
from results of database calls, API calls, or page
rendering.

“

MemCache – Architecture

 Sharding in client code to select server.

 Peer-to-Peer Server instances.

 Server uses in-mem storage.

 Potentially expand to persistent store.

MemCache – Usage Characteristics

 Object-level Consistency, Isolation and Atomicity.

 No persistent storage

 No replication for load-balancing or failover

 Consistency + Partition-tolerance in CAP

MongoDb

 Document-oriented.

 Think of MySQL but with JSON-like
objects comprising the data model, rather
than RDBMS tables.

 Supports neither joins nor transactions.

 secondary indexes

 atomic writes on a per-document level, and
fully-consistent reads.

 master-slave replication with automated
failover and built-in horizontal scaling via
automated range-based partitioning.

MongoDb – Document Model

 Collection: collection of document of the
same type.

 Document: a set of name-value pairs
(properties)

 Flexible and dynamic schema of documents

 Secondary indexes can be built on
document properties.

 Usage: map objects/relational tables to
MongoDb documents.

MongoDb – ACID and CAP

 Document level AID

 Data Consistency –
tunable between read consistency and high
availability/performance

 Reads can be consistent or eventually
consistent

 To achieve complete consistency, write
has to occur on all replicas synchronously.

 CA of CAP or eCAP

MongoDb – Sharding

 Shard by key of document properties within
a collection.

 Central mapping from key space to shards.

 Client requests are directed to different
shard by service mongos.

 Dynamic balancing of shards.

MongoDb – Replication

 Primary Node and Secondary Nodes.

 Synch/Async propagation of writes from
Primary to Secondaries.

 Re-elect a primary among secondaries
when primary goes down.

 Roll-back of writes when a former primary
rejoins as a secondary

 Roll-back writes not propagated.

 Human intervention is needed.

MongoDb – Read/Write

 Read

 Consistent from primary only.

 Eventually consistent from secondaries.

 May lose recent updates when primary
goes down.

 Write

 Synchronously write to journal file (redo
log)

 Asynchronously write to data file

 Asynchronously propagate to
secondaries.

 Cassandra – Peer-to-Peer Distributed
Model

 All nodes are symmetric to avoid SPOF.

 Every node maintains global replication and
sharding topology.

 Every node handles incoming requests and
invoke other nodes to access data.

 Inter-node communication protocol:

 Maintain data replication and sharding
topology on every node.

 Maintain replication consistency.

Cassandra – Node Storage

 SSTable – the immutable persistent base
storage of a replica.

 Memtab – in memory table to accumulate
updates/insertions/deletions. It serves as an
addendum to the SSTable during reads.

 Redo Log – persistent queue of write ops
used for failure recovery when Memtab is
lost.

Cassandra – Read/Write

 Write

 Replicates write on all replicas.

 Write op blocks on writes of configured #
of replicas.

 Each replica updates memtab and
append to redo log.

 Read

 Replicates read on all replicas.

 Read op blocks on reads of configured #
of replicas.

 Check consistency among read results
from replicas.

 Asynchronously bring inconsistent
replicas into consistancy.

Cassandra – Read/Write

 Storage Consolidation

 Merge memtab and on-disk sstable and
flush into new sstable. Then purge redo
log up to the merging point.

 Node Recovery

 All ops have sequentially increasing Ids.

 Node detects missing ops after restart

 Receive updates through inter-node
communications

Cassandra – Index

 Data ordered by row key

 Secondary index on a column

 Implemented as built-in table

 No strong consistency between index and
data.

 Index not suitable for conjunction clauses in
query

 Better filtering on other columns using a
single index.

Cassandra – ACID

 row level AID

 Data Consistency –
tunable between read consistency and high
availability/performance

 Reads can be inconsistent

 Read/Write needs to go through the
majority of replicas to achieve consistency

HBase – Data Model

 Flexible Schema

 Predefined Column Family

 Dynamically added columns under
column family.

 3-dimensional data cell

 Row, column, version

HBase – ACID

 Row-level and region level ACID

 Single row mutation

 Single row CheckAndUpdate

 Multi-row mutation

 Scan (involves multiple rows) does not give
a consistent snapshot of the table.

HBase – Architecture

 Shard table into regions

 Store data and meta-data on HDFS

 Each region is served by 1 or more RegionServer

 MetaData – Table Directory and Region-to-Server
mapping are stored as a table

 Used by Hbase client to find regionserver

 Used by regionservers at startup to
manage regions

 HMaster

 Monitor regionservers

 Interface for MetaData update

Storage
Type

Seco
ndary
Index

ACID CAP Replic
ation

P2P
cluster

Scalability Read/Write
Performance

MongoDb Documen
t

yes Document-level
AID. Weak
read
consistency

By-default:
eCAP

Yes no Disk
Linearly
with data
size. CPU
linearly w.
requests

Default-config:Both
fast.
But write can be
configured for full
propagation for
consistency.

Cassandra Column no Row-level AID.
Read
consistency
tunable.

CA and
eCAP

Yes no Same as
above

Read need to read
from majority of
nodes.
Write can be
configured to
propagate to
majority for read
consistency.

HBase Column auxili
ary

Row-level and
region-level
ACID

CA,
CAP
delegate
to HDFS

Yes no Same as
above

Optimized for
random read and
infrequent random
writes.

MemCache key-value no Object-level ACI CP no yes RAM Linearly
w. cluster size

O(1)

