Compare Cloud NoSqgl Solution

Ming Lel

lel.m.ming@gmail.com

f

Many NoSqgl Solutions out there:

EJDBE N o) ArangoDB

? mongoDB
Jackrabbit /“%?Cassandra -
Couchgg | B .

dX .

| FrQAK coucnsase mpssE
RA\?’I‘ENDB '

e 2nd peneration oo ant (IR

——_'—'_—_ S — e ——

1. Concepts of Distributed Programming
Architecture.

2. Application Programming Model.

3. Detailed Comparison of a few NoSqgl open-
source projects

Cassandra
Hbase
MongoDB
MemCache

Common Architectures

Highly Coupled (clustered):

refers typically to a cluster of machines that closely
work together, running a shared process in parallel.
The task Is subdivided In parts that are made
Individually by each one and then put back together to

make the final result.
Space Based (virtual single address space)

refers to an infrastructure that creates the illusion
(virtualization) of one single address-space. Data are

transparently replicated according to application
needs. Decoupling in time, space and reference is

achieved.

Common Architecture (2)

Peer-to-Peer vs. Client-to-Server

No special machine or machines that provide a
service or manage the network resources. Instead
all responsibilities are uniformly divided among all
machines, known as peers.

VS.

Machines are assigned different tasks and
responsibilities In a cluster. They depend on each
other as client to server.

Common Architecture (3)

Inter-process Co-ordination vs. Database Centric

Method of communicating and coordinating work
among concurrent processes on different
machines.

VS.

Enable distributed computing to be done without any
form of direct inter-process communication, by
utilizing a shared database

Comparison Metrics

Storage Type

CAP

ACID

Read/Write Performance

Replication and Sharding

Indexed Query and Secondary Index

High Availability, Fault Tolerance, Failover
Scalability on data and request

EEEEE———

1

Storage Types

. Document: Jackrabbit, MongoDb, ArangoDDb,
CouchBase, CouchDb

. Columns: Hbase, Cassandra
. Key-Values: Riak, MemCacheDb

CAP Theorem

. Consistency
- data Is the same across replications
. Avallabllity

- ability to access the cluster even if a node In
the cluster goes down

. Partition Tolerance

— cluster continues to function even Iif there Is a
"partition” (communications break) between
nodes

CAP Theorem

A distributed system can not satisfy all three.
CA

data Is consistent between all nodes but may
become out of sync Iif there Is partition In

cluster.

CP
data Is consistent between all nodes, and
maintains partition tolerance by becoming
unavailable when a node goes down.

AP

nodes remain online and unsynced during a
partition

CAP and Eventual Consistency

Eventual Consistency

— Data may be temporarily out of sync on
different nodes and will eventually be brought

to the same version.

— Can be implemented with a background
process that updates out-of-sync nodes.

A distributed system can be eCAP
— This i1s how many noSqgl stores works.

Clustering: Sharding/Replication

Sharding — distributes a single logical
database system across a cluster of

macC

Rep
mac

nines.
iIcation — replicates data among a group of

nines within a cluster to ensure

redundancy, backup, and automatic failover.

Master-master
Master-slave

ACID

Atomic. Everything in a transaction succeeds
or the entire transaction is rolled back.

Consistent. A transaction cannot leave the
database Iin an inconsistent state.

|solated. Transactions cannot interfere with
each other.

Durable. Completed transactions persist in the
event of crashes or server failure.

The Scope of ACID

Traditional SQL: ACID for the whole database
across all tables.

Cloud based Lightweight SQL: Logically

partition data and support ACID within a logical
partition. E.qg.,

— Website hosting service partition data by
different website

NoSqI partial ACID or ACID at row level, (eq,
HBase)

MEMLC AL HE D

MemCache

Free & open source, high-performance, distributed
memory object caching system, generic in nature,
but intended for use in speeding up dynamic web
applications by alleviating database load.

Memcached is an in-memory key-value store for
small chunks of arbitrary data (strings, objects)
from results of database calls, API calls, or page
rendering.

13

(

MemCache — Architecture

- Sharding In client code to select server.
. Peer-to-Peer Server instances.
. Server uses in-mem storage.

- Potentially expand to persistent store.

1

MemCache — Usage Characteristics

- ODbject-level Consistency, Isolation and Atomicity.
- NoO persistent storage

- No replication for load-balancing or failover

. Consistency + Partition-tolerance in CAP

MongoDDb

Document-oriented.

Think of MySQL but with JSON-like
objects comprising the data model, rather
than RDBMS tables.

Supports neither joins nor transactions.
secondary indexes

atomic writes on a per-document level, and
fully-consistent reads.

master-slave replication with automated
fallover and built-in horizontal scaling via
automated range-based partitioning.

= .
——

MongoDb — Document Model

Collection: collection of document of the
same type.

Document: a set of name-value pairs
(properties)

Flexible and dynamic schema of documents

Secondary indexes can be built on
document properties.

Usage: map objects/relational tables to
MongoDb documents.

MongoDb — ACID and CAP

Document level AID

Data Consistency —
tunable between read consistency and high
avallability/performance

Reads can be consistent or eventually
consistent

To achieve complete consistency, write
has to occur on all replicas synchronously.

CA of CAP or eCAP

MongoDb — Sharding

Shard by key of document properties within
a collection.

Central mapping from key space to shards.

Client requests are directed to different
shard by service mongos.

Dynamic balancing of shards.

MongoDb — Replication

Primary Node and Secondary Nodes.

Synch/Async propagation of writes from
Primary to Secondaries.

Re-elect a primary among secondaries
when primary goes down.

Roll-back of writes when a former primary
rejoins as a secondary

Roll-back writes not propagated.
Human intervention is needed.

—e—

MongoDb — Read/Write

. Read

. Write

Consistent from primary only.
Eventually consistent from secondaries.

May lose recent updates when primary
goes down.

Synchronously write to journal file (redo
log)
Asynchronously write to data file

Asynchronously propagate to
secondaries.

Cassandra — Peer-to-Peer Distributed
Model

All nodes are symmetric to avoid SPOF.

Every node maintains global replication and
sharding topology.

Every node handles incoming requests and
INnvoke other nodes to access data.

Inter-node communication protocol:

Maintain data replication and sharding
topology on every node.

Maintain replication consistency.

Cassandra — Node Storage

SSTable — the iImmutable persistent base
storage of a replica.

Memtab — In memory table to accumulate
updates/insertions/deletions. It serves as an
addendum to the SSTable during reads.

Redo Log — persistent queue of write ops
used for failure recovery when Memtab Is
lost.

Cassandra — Read/Write

Write

Read

Replicates write on all replicas.

Write op blocks on writes of configured #
of replicas.

Each replica updates memtab and
append to redo log.

Replicates read on all replicas.

Read op blocks on reads of configured #
of replicas.

Check consistency among read results
from replicas.

Cassandra — Read/Write

Storage Consolidation

Merge memtab and on-disk sstable and
flush into new sstable. Then purge redo
log up to the merging point.

Node Recovery

All ops have sequentially increasing Ids.
Node detects missing ops after restart

Recelve updates through inter-node
communications

Cassandra — Index

Data ordered by row key
Secondary index on a column

Implemented as built-in table

No strong consistency between index and
data.

Index not suitable for conjunction clauses in
query

Better filtering on other columns using a
single index.

Cassandra— ACID

. row level AID

. Data Consistency —
tunable between read consistency and high
avallability/performance

~ Reads can be inconsistent

- Read/Write needs to go through the
majority of replicas to achieve consistency

|

HBase — Data Model

. Flexible Schema

- Predefined Column Family

- Dynamically added columns under
column family.

. 3-dimensional data cell

- Row, column, version

HBase — ACID

- Row-level and region level ACID

- Single row mutation
- Single row CheckAndUpdate
- Multi-row mutation

. Scan (involves multiple rows) does not give
a consistent snapshot of the table.

HBase — Architecture

Shard table into regions
Store data and meta-data on HDFS
Each region is served by 1 or more RegionServer

MetaData — Table Directory and Region-to-Server
mapping are stored as a table

Used by Hbase client to find regionserver

Used by regionservers at startup to
manage regions

HMaster

Monitor regionservers
Interface for MetaData update

——

Cassandra Column no Row-level AID. CAand Yes no Same as Read needto read

Read eCAP above from majority of
I consistency nodes.
tunable. Write can be
configured to
propagate to
majority for read

consistency.

MemCache key-value no Object-level ACI CP no yes RAM Linearly O(1)
w. cluster size

N — e e

